If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12x=33
We move all terms to the left:
3x^2+12x-(33)=0
a = 3; b = 12; c = -33;
Δ = b2-4ac
Δ = 122-4·3·(-33)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{15}}{2*3}=\frac{-12-6\sqrt{15}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{15}}{2*3}=\frac{-12+6\sqrt{15}}{6} $
| -42=x-2 | | -15b—8b+12b=-20 | | -5x+3+8x=12 | | 40=y-13 | | 13.8=n/7.2 | | -9(v+3)+3v+6=8v+11 | | 6/x=0.18 | | X^2+7x=31x-144 | | 2.5k=62 | | 10c−–18=–2 | | -5-14y-6y=-5-20y | | 4/3=24/n | | 1/8x-1/2=3/4x+5 | | 30w+125=365 | | 2(m-6)+2=10 | | v/7=35 | | 7y+7=3y+23 | | w−12=6 | | 7y+7=3y+2 | | 14=4(b-16)+6 | | -19n+20=-20-4n-19n | | 8.1=0.978x | | 16a-14a+5=19 | | -60=-15p | | 8.1=97.8x | | (3x+24)+(4x+10)=90 | | 11+y=20 | | K+(k+2)+(k+2)=4k | | 2=z+3/2 | | 11y-8y-y-y=14 | | 13w+18w-7+6=3w+6-7 | | (3x)=(4x-1) |